Molecular Biology & Agrobiotechnology

- I. 10.000 years of crop plant evolution
- II. Global population and nutrition
- III. Current topics in plant molecular biology and biotechnology research

Copyrights of all pictures with or without reference are to the owners. All pictures serve purely teaching purposes. Any distribution outside this lecture is not allowed.

Aims of the lecture

- I. Fundamentals of modern plant molecular biology
- II. Status of plant biotechnology
- III. Chances and problems
- IV. Economy and ecology

You have to be a good allround biologist to do successful molecular biology!

List Lecture Molecular Biology and Biotechnology WS 2013/14

Prof. Rüdiger Hell (organizer), Centre for Organismal Studies (COS)

Wednesday, 8:15-9:45, COS Lecture Hall, Im Neuenheimer Feld 360

1.	Wed, 16.10.2013	Introduction – Molecular Biology & Agrobiotech (RH)
2.	Wed, 24.10.2013	Crop Plant Biology (RH)
3.	Wed, 30.10.2013	Plant Transformation (RH)
4.	Wed, 06.11.2013	Genomes I (RH)
5.	Wed, 13.11.2013	Genomes II (RH)
6.	Wed, 20.11.2013	Gene Expression (RH)
7.	Wed, 27.11.2013	Resistances (RH)
8.	Wed, 04.12.2013	Phytopharming (RH)
9.	Wed, 11.12.2013	GMO safety (RH)
10.	Wed, 08.01.2014	Tree Biotechnology (S. Strahl)
11.	Wed, 15.01.2013	Enabling Technologies (H. Hillebrand)
12.	Wed, 22.01.2014	Improved sink filling & post-harvest physiology (T. Rausch)
13.	Wed, 29.01.2014	Exam (RH)

Repetition exam : 10. April 2014 (together with Chemistry)

Molecular Biology & Agrobiotechnology

- I. History of crop plant evolution
 - Origin of agriculture
 - Domestication (wheat, rice, corn)
 - Agricultural technology
 - Genetic diversity & biotechnology
- II. Global population and nutrition
- III. Current topics in plant molecular biology and biotechnology research

10.000 years of crop plant evolution

: Gregor Mendel discovers the principles of inheritance

: Deciphering DNA (J. Watson, F. Crick, R. Franklin)

The origin of agriculture: Neolithic revolution (8.000 years BC)

• Global climate changes at the end of the last glacial period

- increase in rainfalls: rainy seasons and long hot and dry summers, development of annual plants
- geographic redistribution of vegetation: imbalance of availability and request for nutrition in some areas of the world
- population exceeds over local capacity of natural vegetation
- shortcomings in plant based nutrition urges development of plant management

• People change from gathering/hunting to farming/breeding

- 1 ha supports 10-100 times more people in agriculture than gatherers and hunters

• Conversion of wild landscapes in fields and grasslands

Domestication of plants and animals

10.000 years ago agriculture originated at the same time at different locations in all continents

The origin of agriculture (I)

The origin of agriculture (II)

Worldwide distribution of plants and their nutritional functions

Crop types	Central America	South America	Africa	Near East	South- east Asia	China
Cereals	x		X	X	X	x
Pseudo- cereals	Х	X				
Grain legumes	X	X	X	X	Х	X
Roots & tubers	x	X	X	X	x	x
Oil plants	х	X	X	X	X	x
Fibers	x	X	X		X	
Fruits	x	X	X	X	Х	x
Vegetables & spices	x	X	x	x	X	X
Stimulants	X	X	X	X		X

Domestication: Accelerated evolution

	Seed dispersal	Seed dormany	Plant shape	Adaptation to photoperiod	Extremes of shape, colour and proportions	Resistence against pathogens and pests; toxic compounds
Natural environment	-Spontaneous distribution by opening mechanisms	-Prevention of germination at adverse conditions -Allows survival in soil until environment improves	-Competition: Access to light, water, nutrients -Vegetative development equally important as seeds and fruits; low yield	-Controls development until generative phase under sutiable environment -Allows spread of seeds under optimal conditions	-Hiding of reproductive organs after flowering	-Defense mechanisms: Morphology, toxic compound (poppy: morphin; Digitalis/Fingerhut; Cyanogenic glucoside/Cassava -Fruits, seeds in warning colour
Agro- ecosystem	-Seeds remain with plant	-Less competition and more predictable conditions -Simultaneous germination	-Compact architecture to reduce competition -Less branches and shorter secondary shoots	-Loss of photoperiodicity allows several generations and harvests per year	-Enormous diversification of forms and colours -Enforced by human selection	 Plant protection by humans Selection of non-toxic varieties Selection for special processing methods

Domestication syndrome

- Similar traits/properties are chosen to differentiate crop plants from wild ancestors
 - involvement of only few genes
 - simple inheritage by restricted genomic localization
 - trait gene expression independent from environment
- Final result:
 - crop plants depend on cultivation by man (sowing & harvesting)
 - man depends vice versa on sufficient yield production

Synchronization in the field vs. adaptation towards multiple influences in a natural environment

Molecular Biology & Agrobiotechnology

- I. 10.000 years of crop plant evolution
 - Origin of agriculture
 - Domestication (wheat, rice, corn)
 - Agricultural technology
 - Genetic diversity & biotechnology
- II. Global population and nutrition
- III. Current topics in plant molecular biology and biotechnology research

Wheat was domesticated in the Near East

- Enormous economic importance Foodstuff for 54% of world population; feedstuff
- Planted on >215 Mio. ha on 5 continents
- Total production: ca. 600 Mio. t in 2001
- Wheat: Collective term for the cereal Triticum
 - Triticum aestivum (Bread wheat)
 - Triticum durum (Pasta wheat)
 - Triticum monococcum (Einkorn)
 - 3000 recent forms
- Most of the species of the family originate in the Near East
 - Species of the Genus *Triticum* und *Aegilops*
 - Fertile Crescent: Turkey, Libanon, Israël, Jordan, Syria, Iraq, Iran
 - 2 essential genetic events determine the evolution of wheat:
 - Normal evolution (Mutations) und chromosome divergence led to different forms (A, B, D) of the 7 chromosomes
 - Spontaneous crossing of divergent parents generated polyploid forms: Tetraploids (4x7) und Hexaploids (6x7)
 - Doubling of chromosomes prevents sterility of hybrids

Domesticated wheat is derived from three wild parents

From: Shewry, P.R. (JEB, 2009)

Fused protein bodies in the endosperm

Dough: a continuous proteinaceous matrix

Rice was domesticated independently in Africa and Asia

- 34% of world population depends on nutrition by rice
- Cultivated area of ca. >150 Mio ha (China and India)
- Worldwide production: 600 Mio t in 2001
- Origin in Asia: Oryza sativa (derived from O. nivara)
 - 2 wild forms dominate in South-east Asia:
 - \rightarrow Oryza nivara (annual)
 - \rightarrow Oryza rufipogon (perennial)
 - 5000 recent forms
- Origin in Africa: O. glaberrina (derived from O. barthii)
 - Resistent against adverse climates
 - Extensive cultivation and spontaneous disperal of seed
- Particular aspects of rice plantation
 - Oldest propargation areas 8000 years old (Yangtze, China)
 - Domestication of *O. nivara* was followed by divergence into 2 subforms *indica* und *japonica*:
 - \rightarrow indica: non-sticky; long kernels, tropical climate, deep-water rice
 - \rightarrow japonica: sticky; short kernels, moderate climate, dry rice

Maize was domesticated in Central and South America

- Provides 12% of world population with food
- Main cultivation areas:
 - USA, Brasil, Mexico, India, France, Italy
- Technical applications
 - feed stuff
 - Industrial ethanol production
- Total production: 600 mio t in 2001

Teosinte

Mais

- Original species: Téosinte
 - Geographical distribution corresponds to old american civilazations
 - 6000 recent forms
- Single domestication event in mountains of West-Mexico
- Simultaneous flowering of Teosinte and Maize allowed crosses
- World-wide distribution of maize from 1492 on
 - Introduction of 'Old World' species (wheat, rice) into 'New World'
 - Introduction of Maize, Tomato, Potato into 'Old World'

Molecular Biology & Agrobiotechnology

- I. 10.000 years of crop plant evolution
 - Origin of agriculture
 - Domestication (wheat, rice, corn)
 - Agricultural technology
 - Genetic diversity & biotechnology
- II. Global population and nutrition
- III. Current topics in plant biotechnology research

Agricultural technology (ca. 1850 – 1950)

What are the changes?

- Inventions of new machines since 1850
- Inorganic fertilization (J. Liebig, 1855)
 - Application of chemicals to replace natural fertilizers
- New and improved crop plant species (Mendelian Laws, 1910)
 - genetic breeding
- Plant protection measures (since 1950ies)
 - Application of herbicides and pesticides
- Green revolution (N. Borlaug, since 1960ies)
 - Breeding of resistance traits, short (dwarf) cereals
- Irrigation technology
 - 18% of agricultural surfaces yield 40% of total production
 - water is the main limitation for agricultural production of the 21st century
- Information technology
 - precision agriculture (computers, satellites, GPS)

18% of agricultural surfaces yield up to 40% of total production

Results of agricultural technology in developing countries

Country	Plant	Yield in t ³ /ha	
		1963	1983
India	wheat	0,9	1,7
	rice	0,9	2,2
China	wheat	1,0	2,5
	rice	2,0	4,7

(FDA, 1989)

Norman E. Borlaug (1914-2009)

Improvement programs by CGIAR Institutes (**C**onsultativ **G**roup for International **A**gricultural **R**esearch (founded in 1971 by world bank)

- ICRISAT; India drought resistance
- CIAT; Colombia insect resistance in beans
- IRRI (International Rice Research Institute); Philippines rice
- CIMMYT (International Center for the improvement of maize and wheat) in Mexico

The green revolution resulted in yield duplication.

Results agricultural technology: Limited crop plant diversity today

Culture	Number of varieties	Major varieties		
		Number	Cultivation area (%)	
Beans - dry	25	2	60	
Beans - Iose	70	3	76	
Cotton	50	3	78	
Maize	197	6	71	
Peanut	15	9	95	
Soybean	62	6	56	
Wheat	269	9	50	

National Research Council, 1972

The limitation in crop plant diversity is a result of the cultivation of few varieties in huge dimensions.

Creation of genetic diversity

- conservation programs for natural diversity
- application of genetic ressources for cultivation programs
 - african rice has elevated drought resistance phentotypes
 - central american beans show a better adaptation to P-depleted soils

— ...

- Mutant production
 - spontaneous mutations (Ruby Red, 1926)
 - irradiation mutations (Rio Red, 1988)
- Production of Hybrids and polyploids
 - plants are much more promiscuous than animals!
 - ' Modern' strawberrys
 - Triticale
- Genetic engineering: ' genetic revolution '

Molecular Biology & Agrobiotechnology

- I. 10.000 years of crop plant evolution
 - Origin of agriculture
 - Domestication (wheat, rice, corn)
 - Agricultural technology
 - Genetic diversity & biotechnology
- II. Global population and nutrition
- III. Current topics in plant biotechnology research

Preservation of genetic diversity

9

10

Maintaining varieties in gene bank depositions worldwide

- cold storage: corn
- dry storage: baroque Versailles carnation
- tissue culture-based storage: potatoes
- botanical gardens for conservation purposes (internet links!)

1. Beijing, China

2

- 2. Fort Collins (GRIN), USA (440.000 acc.)
- 3. Braunschweig/Gatersleben, Germany
- 4. St. Petersburg, Russia
- 5. Tsukuba, Japan

http://www.ipk-gatersleben.de/en/02/02/

6. Suwón, South-Korea

5

- 7. Saskatoon, Canada
- 8. Brasilia, Brazil
- 9. Bari, Italy
- 10. Addis Abeba, Ethiopia

Access to genetic material

- Species definition: all individuals can cross
- Classes of genetic ressources:
 - Class I biological definition of species (crop plant + wild plant)
 - Class II forced crosses (low frequency example: strawberry)
 - Class III crosses only by enhanced cultivation technology (example: Triticale)
 - Class IV plant species vs. species from other kingdoms

The genetic revolution allows to overcome the borders between organisms.

Production of transgenic plants

 Abbreviation of conventional breeding

 Allows for integration of foreign genes into a plant genome

Abbreviation of breeding by biotechnology

Biotechnology allows for a controlled and directed improvement of a crop plant **and** to overcome barriers between species/organisms

Molecular Biology & Agrobiotechnology

- I. 10.000 years of crop plant evolution
- II. Global population and nutrition
 - Requirement and distribution of arable land
 - Cultivation areas of transgenic crops
- III. Current topics in plant molecular biology and biotechnology research

Production origin of plant food stuff

Requirement for arable land will exceed available area in 2050

Source: D.T. Avery, US-Hudson Institute, Deutsche Stiftung Weltbevölkerung 1998

Cultivated area of transgenic plants 1997 - 2010

From: C. James, ISAAA Executive Brief 44-2012

Biotech crop countries 2011

Molecular Biology & Agrobiotechnology

- I. 10.000 years of crop plant evolution
- II. Global population and nutrition
- III. Current topics in plant biotechnology research
 - Identification of trait genes
 - Input and output traits
 - The next generation of crop plants

Gene identification: Genes und Genomes

7382 Complete Genome Projects on 15. Oct. 2013

Archaeal: 234 Bacterial: 6837 Eukaryal: 311

- **Procaryotes**: Archaea (*Pyrococcus, Halobacter, ...*), Eubacteria (*Clostridium, Bacillus, Escherichia* (4.100kb), *Bradyrhizobium, Vibrio, ...*)

Incomplete projects: 24.445

Species	Name	Genome size (kb)	# ORFs
A. gambiae	Malaria mosquito	278.000	14.000
A. thaliana	Thale cress	115.428	25.498
C. elegans	Nematode	97.000	19.099
D. melanogaster	Fruitfly	137.000	14.100
H. sapiens	Man	~3 x 10 ⁶ kb	~ 30.000
M. musculus	Mouse	~2.5 x 10 ⁶ kb	~ 30.000
O. sativa indica	Rice	420.000	50.000
S. cerevisiae	Baker's yeast	12.069	6.294

http://www.genomesonline.org/

Classification of transgenic traits

Input traits

- Agricultural properties
- Producer-oriented
- 1. Generation of transgenics

Output traits

- Quality properties
- Consumer-oriented
- 2. Generation of transgenics

Molecular biology goals towards input traits

Input traits (agricultural properties)

- Improved germination
- Improved performance
 - Abiotic stress resistence
 - \rightarrow Low temperatures
 - \rightarrow High temperatures
 - \rightarrow Drought
 - \rightarrow Salt tolerance
 - \rightarrow Herbicides
 - \rightarrow
 - Biotic stress resistence
 - \rightarrow Virus
 - \rightarrow Bacteria
 - \rightarrow Fungi
 - \rightarrow Nematodes
 - \rightarrow Insects

 \rightarrow ...

Total herbicides

- Glyphosate (RoundupReady, Monsanto)
 Resistance gene origin: Agrobacterium umefaciens
 Target: EPSP Synthase in Chloroplasts
- Phosphinotricine (Liberty Link, Aventis)

Resistance gene origin: *Streptomyces hygroscopicus* Target: Glutamine Synthetase in

Target: Glutamine Synthetase in Chloroplasts

RoundUp Ready rape seed

Before

After

Input traits: Resistance against abiotic stress

Nature provides templates for tolerance mechanisms:

Ice plant (Mesembryanthemum) • Salt Moss (Physcomitrella patens) • Salt Cactus Resurrection plant (Craterostigma) Drought

Drought

Low temperature

Drought

Input traits: Resistance against biotic stress (I)

Resistence against insects: Bt maize

• Origin: Bacillus thuringiensis

Expression of *Bt*-Gene: Production of Bt-Protein

Corn borer (Maiszünsler)

Main pest in corn production

Enzymatic hydrolysis of Bt-Protein: Toxic fragments are lethal

Classification of transgenic traits

Output traits (quality properties)

- Higher yield
- Production of plant components
 - Nutritional value
 - Nutritional quality
 - Nutraceuticals
 - Production of pharmaceuticals
 - Production of animal feed
 - Industrial enzymes
 - Plastic
 - Polymers
 - ...

'Golden Rice' – Rice with more provitamine A

- Project of Ingo Potrykus, ETH Zürich
- 50% of world population is fed by rice
- Rice kernel without husk has no vitamine A
- Vitamine A deficiency affects betrifft 800 million people (eyes, immuno defense, blood formation, fertility. High mortality rate among children)
- Scientific approach: Introduction of all required genes for synthesis of β-Carotin
 - Phytoene Synthase (Narcissus)
 - Phytoene Desaturase (Erwinia)
 - Lycopine Cyclase (Narcissus)
- Other genes of interest:
 - Ferritin for enhance iron content
 - Essential amino acids (methionine)

Next generation of output traits: nutraceuticals and molecular pharming

- Antibodies: 'Plantibodies' Recombinant IgGs, single chain F_{ab}
- Vaccines: Immunization
 Lyme disease, caries, viruses
- Therapeutic proteins: Protease inhibitors, hirudin, somatotropin, interferon, enkephalin
- Nutrient additives:

Vitamin A, iron, tocopherol, essential amino acids

Summary

- The development of crop plants has multiple origins and accompagnied the evolution of modern humans
- The historical sequence of events resulted in a concentration of few species with a limited gene pool
- Strong selection pressure led to the depence of crop plants from man
- Drastic genetic shifts by crosses and mutation caused an accelerated evolution to crop plants
- The successful increase of food production by breeding can not compensate the increase in population and loss of arable land in the long run
- Biotechnology allows the renewal of genetic diversity of crop species and the introduction of new traints
- The 1st generation of transgenic plants refers largely to input traits : Herbicide resistence (Round-up Ready) and insect resistence (Bt-toxin)
- The 2st generation of transgenic plants will be gentically more advanced and in addition to increased yield will provide new and better products

Next lecture: Crop Plant Biology

Global area of biotech crops by country 2011

Rank	Country	Area (million hectares)	Biotech Crops
	Contract Contract	(
1	USA*	69.0	Maize, soybean, cotton, canola, sugarbeet, alfalfa, papaya, squash
2	Brazil*	30.3	Soybean, maize, cotton
3	Argentina*	23.7	Soybean, maize, cotton
4	India*	10.6	Cotton
5	Canada*	10.4	Canola, maize, soybean, sugarbeet
6	China*	3.9	Cotton, papaya, poplar, tomato, sweet pepper
7	Paraguay*	2.8	Soybean
8	Pakistan *	2.6	Cotton
9	South Africa*	2.3	Maize, soybean, cotton
10	Uruguay*	1.3	Soybean, maize
11	Bolivia*	0.9	Soybean
12	Australia*	0.7	Cotton, canola
13	Philippines*	0.6	Maize
14	Myanmar*	0.3	Cotton
15	Burkina Faso*	0.3	Cotton
16	Mexico*	0.2	Cotton, soybean
17	Spain*	0.1	Maize
18	Colombia	< 0.1	Cotton
19	Chile	< 0.1	Maize, soybean, canola
20	Honduras	< 0.1	Maize
21	Portugal	< 0.1	Maize
22	Czech Republic	< 0.1	Maize
23	Poland	< 0.1	Maize
24	Egypt	< 0.1	Maize
25	Slovakia	< 0.1	Maize
26	Romania	<0.1	Maize
27	Sweden	< 0.1	Potato
28	Costa Rica	< 0.1	Cotton, soybean
29	Germany	<0.1	Potato